Evidence and Studies

The following studies are provided for general information purposes only. Nothing on this webpage, or in the referenced studies, should be considered as support for pesticidal claims of a specific product, nor as pesticidal claims in connection with an offer for sale or distribution of a specific product, nor is the information intended to suggest that any specific copper product will perform in a certain way. In general, the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires that all pesticides, including all antimicrobial pesticide products, distributed or sold must be registered by EPA and distributed bearing their EPA-approved pesticide label, which includes specific directions for use. In addition, it is unlawful for any person to sell or distribute: (1) an unregistered pesticide; or (2) a registered pesticide with claims that differ from those approved by EPA. Further testing would be required to support any EPA-registered product label claims against SARS-CoV-2.

 

Clinical/Field Trials

Economics

Guidelines

Laboratory Efficacy

Mechanism

Reviews

 

Open Access papers are prefaced with the open access icon . Some of these links only work when copied and pasted into your browser. Open access (OA) refers to free, unrestricted online access to research outputs such as journal articles and books. OA content is open to all, with no access fees.

 

Clinical/Field Trials

In vitro Evalulation of Antimicrobial Efficacy and Durability of Three Copper Surfaces Used in Healthcare. E Bryce, B Velapatino, HA Khorami, T Donnelly-Pierce, T Wong, R Dixon, E Asselin. Biointerphases, February 2020

https://avs.scitation.org/doi/10.1116/1.5134676 

Copper for the Prevention of Outbreaks of Health Care–Associated Infections in a Long-term Care Facility for Older Adults. S Zerbib, L Vallet, A Muggeo, C de Champs, A Lefebvre, D Jolly, L Kanagaratnam. Journal of the American Medical Directors Association, February 2019

https://www.sciencedirect.com/science/article/pii/S1525861019302294

Copper Alloy Touch Surfaces in Healthcare Facilities: An Effective Solution to Prevent Bacterial Spreading. Marius Colin, Flora Klingelschmitt, Emilie Charpentier, Jérôme Josse, Lukshe Kanagaratnam, Christophe De Champs, Sophie C. Gangloff. MDPI, December 2018.

open access icon https://www.mdpi.com/1996-1944/11/12/2479

Antimicrobial efficacy and compatibility of solid copper alloys with chemical disinfectants. Katrin Steinhauer, Sonja Meyer, Jens Pfannebecker, Karin Teckemeyer, Klaus Ockenfeld, Klaus Weber, Barbara Becker. PLOS ONE, August 2018

open access icon https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200748

Contact killing and antimicrobial properties of copper. M Vincent, R E Duval, P Hartemann, M Engels‐Deutsch. Journal of Applied Microbiology, December 2017

open access icon https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13681

Reduction of Bacterial Burden by Copper Alloys on High-touch Athletic Center Surfaces. Z Ibrahim, A Petrusan, P Hooke, S Hinsa-Leasure. American Journal of Infection Control, August 2017

open access icon https://www.ajicjournal.org/article/S0196-6553(17)31008-8/fulltext

Reduction of Environmental Contamination With Multidrug-Resistant Bacteria by Copper-Alloy Coating of Surfaces in a Highly Endemic Setting. Maria Souli, Anastasia Antoniadou, Ioannis Katsarolis, Irini Mavrou. Infection Control & Hospital Epidemiology, May 2017

https://www.cambridge.org/core/journals/infection-control-and-hospital-epidemiology/article/reduction-of-environmental-contamination-with-multidrugresistant-bacteria-by-copperalloy-coating-of-surfaces-in-a-highly-endemic-setting/E40B680532F64DC16DFD55CD73EE85F5

The Role of Copper Surfaces in Reducing the Incidence of Healthcare-associated infections: A Systematic Review and Meta-analysis. Ignacio Pineda, Richard Hubbard,Francisca Rodríguez. Canadian Journal of Infection Control, Spring 2017

open access icon https://ipac-canada.org/photos/custom/CJIC/IPAC_Spring2017_Pineda.pdf

Potential of Copper Alloys to Kill Bacteria and Reduce Hospital Infection Rates. Michels and Michels, Internal Medicine Review, March 2017

open access icon https://www.researchgate.net/publication/317506873_Potential_of_copper_alloys_to_kill_bacteria_and_reduce_hospital_infection_rates

Antimicrobial Copper Alloys Decreased Bacteria on Stethoscope Surfaces. Michael G. Schmidt et al. American Journal of Infection Control. 2017.

open access icon https://www.ajicjournal.org/article/S0196-6553(17)30094-9/abstract

Copper as an Antibacterial Material in Different Facilities. J. Inkinen, R. Mäkinen, M.M. Keinänen-Toivola, K. Nordström, M. Ahonen. Letters in Applied Microbiology, Vol. 64, Issue 1, January 2017

https://onlinelibrary.wiley.com/doi/full/10.1111/lam.12680

Copper Alloy Surfaces Sustain Terminal Cleaning Levels in a Rural Hospital. Shannon M. Hinsa-Leasure, Queenster Nartey, Justin Vaverka, Michael G. Schmidt. American Journal of Infection Control, 28 September 2016

open access icon https://www.ajicjournal.org/article/S0196-6553(16)30751-9/fulltext

Perspectives From the Field in Response to “It is Time to Revise our Approach to Registering Antimicrobial Agents for Health Care Settings”. Michael G. Schmidt, Joseph J. John Jr., Katherine D. Freeman, Peter A. Sharpe, Adam A. Estelle, Harold T. Michels. American Journal of Infection Control, 9 August 2016

https://www.ajicjournal.org/article/S0196-6553(16)30551-X/abstract

Copper Alloys - The New ‘Old’ Weapon in the Fight Against Infectious Disease. Harold T. Michels, Corinne A. Michels, Current Trends in Microbiology, Vol. 10 2016

open access icon http://www.researchtrends.net/tia/abstract.asp?in=0&vn=10&tid=41&aid=5817&pub=2016&type=3

Antimicrobial Applications of Copper. Marin Vincent, Philippe Hartemann, Marc Engels-Deutsch. International Journal of Hygiene and Environmental Health. doi:10.1016/j.ijheh.2016.06.003

https://www.sciencedirect.com/science/article/pii/S1438463916300669

Potential Effectiveness of Copper Surfaces in Reducing Health Care–associated Infection Rates in a Pediatric Intensive and Intermediate Care Unit: A Nonrandomized Controlled Trial. Bettina von Dessauer Maria S. Navarrete, Dona Benadof, Carmen Benavente, Michael G. Schmidt. American Journal of Infection Control. doi:10.1016/j.ajic.2016.03.053

open access icon https://www.ajicjournal.org/article/S0196-6553(16)30338-8/fulltext

Copper Surfaces are Associated with Significantly Lower Concentrations of Bacteria on Selected Surfaces within a Pediatric Intensive Care Unit. Michael G. Schmidt PhD; Bettina von Dessauer MD; Carmen Benavente MD; Dona Benadof MD; Paulina Cifuentes RN; Alicia Elgueta RN; Claudia Duran MS; Maria S. Navarrete MD MPH. American Journal of Infection Control, Corrected proof. doi:10.1016/j.ajic.2015.09

open access icon https://www.ajicjournal.org/article/S0196-6553(15)00981-5/fulltext

From Laboratory Research to a Clinical Trial: Copper Alloy Surfaces Kill Bacteria and Reduce Hospital-Acquired Infections. Michels, H.T. 2015. Health Env Research & Design Journal. 1–16.

open access icon https://journals.sagepub.com/doi/full/10.1177/1937586715592650

Implementation of Antimicrobial Copper in Neonatal Intensive Care Unit. P Efstathiou, M Anagnostakou, E Kouskouni, C Petropoulou, K Karageorgou, Z Manolidou, S Papanikolaou, M Tseroni, E Logothetis, V Karyoti. Antimicrobial Resistance and Infection Control 2013, 2(Suppl1):O68.

open access icon https://aricjournal.biomedcentral.com/articles/10.1186/2047-2994-2-S1-O68

Financial Benefits after the Implementation of Antimicrobial Copper in Intensive Care Units (ICUs). P Efstathiou, E Kouskouni, S Papanikolaou, K Karageorgou, Z Manolidou, M Tseroni, E Logothetis, C Petropoulou, V Karyoti. Antimicrobial Resistance and Infection Control 2013, 2(Suppl 1):P369

open access icon https://aricjournal.biomedcentral.com/articles/10.1186/2047-2994-2-S1-P369

Antimicrobial Copper (Cu+) Implementation and its Influence to the Epidemiological Data in Elementary School Population. P Efstathiou, E Kouskouni, K Karageorgou, M Tseroni, Z Manolidou, S Papanikolaou, E Logothetis, H Tzouma, C Petropoulou, I Agrafa. Antimicrobial Resistance and Infection Control 2013, 2(Suppl 1):P370

open access icon https://aricjournal.biomedcentral.com/articles/10.1186/2047-2994-2-S1-P370

Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit. Cassandra D Salgado, MD; Kent A Sepkowitz, MD; Joseph F John, MD; J Robert Cantey, MD; Hubert H Attaway, MS; Katherine D Freeman, DrPH; Peter A Sharpe, MBA; Harold T Michels, PhD; Michael G Schmidt, PhD. ICHE, Vol. Vol. 34, No. 5, 2013., Infection Control and Hospital Epidemiology , Vol. 34, No. 5, Special Topic Issue: The Role of the Environment in Infection Prevention (May 2013), pp. 479-486.

open access icon https://www.jstor.org/stable/10.1086/670207#full_text_tab_contents

Copper Continuously Limits the Concentration of Bacteria Resident on Bed Rails within the Intensive Care Unit. Michael G Schmidt, PhD; Hubert H Attaway III, MS; Sarah E Fairey, BS; Lisa L Steed, PhD; Harold T Michels, PhD; Cassandra D Salgado, MD, MS Infection Control and Hospital Epidemiology, Vol. 34, No. 5. May 2013.

open access icon https://www.jstor.org/stable/10.1086/670224?seq=1#page_scan_tab_contents

Experimental Tests of Copper Components in Ventilation Systems for Microbial Control. Charles Feigley, Jamil Khan, Deborah Salzberg, James Hussey, Hubert Attaway, Lisa Steed, Michael Schmidt and Harold Michels, (2013), HVAC&R Research, 19:1, 53-62

https://www.tandfonline.com/doi/abs/10.1080/10789669.2012.735150?journalCode=uhvc20

Antimicrobial Effect of Copper on Multidrug-resistant Bacteria. G. Steindl, S. Heuberger and B. Springer. Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 99 (2012).

https://www.researchgate.net/publication/281481662_Antimicrobial_effect_of_copper_on_multidrug-resistant_bacteria

Application of copper to prevent and control infection. Where are we now? O’Gorman J, Humphreys H, Journal of Hospital Infection (2012), http://dx.doi.org/10.1016/j.jhin.2012.05.009.

https://www.journalofhospitalinfection.com/article/S0195-6701(12)00165-X/abstract

Sustained Reduction of Microbial Burden on Common Hospital Surfaces through Introduction of Copper. Michael G Schmidt, Hubert H Attaway, Peter A Sharpe, Joseph John Jr, Kent A Sepkowitz, Andrew Morgan, Sarah E Fairey, Susan Singh, Lisa L Steed, J Robert Cantey, Katherine D Freeman, Harold T Michels, Cassandra D Salgado J Clin Microbiol July 2012 vol 50

open access icon https://jcm.asm.org/content/50/7/2217?sid=69a977c8-f292-41e8-ab6d-374d24330521

Characterization and Control of the Microbial Community Affiliated with Copper or Aluminum Heat Exchangers of HVAC Systems. Michael G Schmidt, Hubert H Attaway, Silva Terzieva, Anna Marshall, Lisa L Steed, Deborah Salzberg, Hameed A Hamoodi, Jamil A Khan, Charles E Feigley, Harold T Michels. Curr Microbiol, 2012 May 9.

open access icon https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378845/

Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Libin Zhu, Jutta Elguindi, Christopher Rensing, Sadhana Ravishankar, Article in Food Microbiology 30 (2012) 303-310. Copyright 2011 Elsevier Ltd

https://www.sciencedirect.com/science/article/pii/S0740002011002735?via%3Dihub

Antimicrobial Efficacy of Copper Alloy Furnishing in the Clinical Environment; a Cross-over Study. Karpanen T J, Casey A L, Lambert P A, Cookson B D, Nightingale P, Miruszenko L and Elliott T S J. Infection Control and Hospital Epidemiology. Jan 2012

open access icon https://www.jstor.org/stable/10.1086/663644#full_text_tab_contents

The Role of Antimicrobial Copper Surfaces in Reducing Healthcare-associated Infections, Panos A Efstathiou, European Infectious Disease, 2011;5(2):125-8

open access icon https://www.researchgate.net/publication/233387430_Healthcare-associated_Infections_The_Role_of_Antimicrobial_Copper_Surfaces_in_Reducing_Healthcare-associated_Infections

Science, Technology and Design: Harnessing Copper’s Antimicrobial Power – A Review. Mark Tur, Proceedings of 2011 European Design 4 Health Conference, Sheffield, UK. 13-15th July 2011

open access icon https://lirias.kuleuven.be/bitstream/123456789/359004/1/D4H2011_proceedings_v5a.pdf#page=329

Metallic Copper as an Antimicrobial Surface. Gregor Grass, Christopher Rensing and Marc Solioz, Appl. Environ. Microbiol. March 2011, pp 1541-1547. Vol 77, No 5. doi: 10.1128/AEM.02766-10,

open access icon https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067274/

A Pilot Study to Determine the Effectiveness of Copper in Reducing the Microbial Burden (MB) of Objects in Rooms of Intensive Care Unit (ICU) Patients. C D Salgado, A Morgan, K A Sepkowitz et al. Poster 183, 5th Decennial International Conference on Healthcare-Associated Infections, Atlanta, March 29, 2010

https://shea.confex.com/shea/2010/webprogram/Paper1590.html

Effectiveness of copper contact surfaces in reducing the microbial burden (MB) in the intensive care unit (ICU) of Hospital del Cobre, Calama, Chile. V Prado, C Durán, M Crestto, A Gutierrez, P Sapiain, G Flores, H Fabres, C Tardito, M Schmidt. Poster 56.044, presented at the 14th International Conference on Infectious Diseases, Miami, March 11, 2010.

https://www.academia.edu/32936953/Effectiveness_of_copper_contact_surfaces_in_reducing_the_microbial_burden_MB_in_the_intensive_care_unit_ICU_of_hospital_del_Cobre_Calama_Chile

Survival of Bacteria on Metallic Copper Surfaces in a Hospital Trial. André Mikolay, Susanne Huggett, Ladji Tikana, Gregor Grass, Jörg Braun and Dietrich H Nies. Applied Microbial and Cell Physiology,DOI 10.1007/s00253-010-2640-1. May 2010

https://www.academia.edu/28411955/Survival_of_bacteria_on_metallic_copper_surfaces_in_a_hospital_trial?auto=download

Performance of Ultramicrofibre Cleaning Technology with or without Addition of a Novel Copper-Based Biocide. D Hamilton, A Foster, L Ballantyne, P Kingsmore, D Bedwell, T J Hall, S S Hickok, A Jeanes, P G Coen, V A Gant, Journal of Hospital Infection (2010) 74, 62-71. doi:10.1016/j.jhin.2009.08.006.

https://www.journalofhospitalinfection.com/article/S0195-6701%2809%2900345-4/abstract

Role of Copper in Reducing Hospital Environment Contamination. A L Casey, D Adams, T J Karpanen, P A Lambert, B D Cookson, P Nightingale, L Miruszenko, R Shillam, P Christian and T S J Elliott, J Hosp Infect (2009), doi:10.1016/j.jhin.2009.08.018.

https://www.journalofhospitalinfection.com/article/S0195-6701%2809%2900408-3/abstract

Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. Marais F et al, J Hosp Infect (2009), doi:10.1016/j.jhin.2009.07.010.

Antimicrobial Characteristics of Copper. H T Michels, ASTM Standardization News, October 2006.

open access icon https://www.astm.org/SNEWS/OCTOBER_2006/michels_oct06.html

Economics

The Role of Copper Surfaces in Reducing the Incidence of Healthcare-associated infections: A Systematic Review and Meta-analysis .Ignacio Pineda, Richard Hubbard,Francisca Rodríguez. Canadian Journal of Infection Control, Spring 2017

open access icon https://ipac-canada.org/photos/custom/CJIC/IPAC_Spring2017_Pineda.pdf

Potential of Copper Alloys to Kill Bacteria and Reduce Hospital Infection Rates. Michels and Michels, Internal Medicine Review, March 2017

open access icon http://internalmedicinereview.org/index.php/imr/article/download/363/pdf

Financial Benefits after the Implementation of Antimicrobial Copper in Intensive Care Units (ICUs). P Efstathiou, E Kouskouni, S Papanikolaou, K Karageorgiou, Z Manolidou, M Tseroni, E Logothetis, C Petropoulou, V Karyoti. Antimicrobial Resistance and Infection Control 2013, 2(Suppl 1):P369

open access icon https://aricjournal.biomedcentral.com/articles/10.1186/2047-2994-2-S1-P369

The Economic Assessment of an Environmental Intervention: Discrete Deployment of Copper for Infection Control in ICUs. M Taylor, S Chaplin, York Health Economics Consortium, York, UK, Antimicrobial Resistance and Infection Control 2013, 2(Suppl1):P368

open access icon https://aricjournal.biomedcentral.com/articles/10.1186/2047-2994-2-S1-P368

The Role of Antimicrobial Copper Surfaces in Reducing Healthcare-associated Infections. Panos A Efstathiou, European Infectious Disease, 2011;5(2):125-8

open access icon http://www.medical-development.gr/articles/efstathiou.pdf

Guidelines

epic3: National Evidence-Based Guidelines for Preventing Healthcare-Associated Infections in NHS Hospitals in England. H P Loveday, J A Wilson, R J Pratt, M Golsorkhi, A Tingle, A Baka, J Browne, J Prieto, M Wilcox. Journal of Hospital Infection 86S1 (2014) S1–S70

https://www.elsevier.com/about/press-releases/research-and-journals/epic3-national-evidence-based-guidelines-for-preventing-healthcare-associated-infections-in-nhs-hospitals-in-england

Laboratory Efficacy

Rapid inactivation of SARS-CoV-2 on copper touch surfaces determined using a cell culture infectivity assay. Keevil et al., bioRxiv preprint, January 2021

 https://www.biorxiv.org/content/10.1101/2021.01.02.424974v1.full.pdf 

Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. van Doremalen, et al. 2020, N Engl J Med; 382; 1564-1567

 https://www.nejm.org/doi/full/10.1056/nejmc2004973 

Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat. A Parra, M Toro, R Jacob, P Navarrete, M Troncoso, G Figueroa, A Reyes-Jara. Brazilian Journal of Microbiology, 2018

open access icon https://www.sciencedirect.com/science/article/pii/S1517838217312546#!

Impact of oxidation of copper and its alloys in laboratory-simulated conditions on their antimicrobial efficiency. M Walkowicza, P Osucha, B Smyraka, T Knycha, E Rudnika, L Cieniekb, A Różańskac, A Chmielarczykc, D Romaniszync, M Bulandac. Corrosion Science, August 2018

open access icon https://www.sciencedirect.com/science/article/pii/S0010938X17313963

Antimicrobial efficacy and compatibility of solid copper alloys with chemical disinfectants.Katrin Steinhauer, Sonja Meyer, Jens Pfannebecker, Karin Teckemeyer, Klaus Ockenfeld, Klaus Weber, Barbara Becker. PLOS ONE, August 2018

open access icon https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200748

Antimicrobial Effect of Copper Alloys on Acinetobacter Species Isolated from Infections and Hospital Environment. Anna Różańska, Agnieszka Chmielarczyk, Dorota Romaniszyn, Grzegorz Majka, Małgorzata Bulanda. BioMed Central, January 2018

open access icon https://aricjournal.biomedcentral.com/track/pdf/10.1186/s13756-018-0300-x?site=aricjournal.biomedcentral.com

Contact killing and antimicrobial properties of copper. M Vincent, R E Duval, P Hartemann, M Engels‐Deutsch. Journal of Applied Microbiology, December 2017

open access icon https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13681

Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities. Hahn C., Hans M., Hein C., Mancinelli R.L., Mücklich F., Wirth R., Rettberg P., Hellweg C.E., and Moeller R.. Astrobiology. December 2017, 17(12): 1183-1191.

https://www.liebertpub.com/doi/10.1089/ast.2016.1620

Life-like Assessment of Antimicrobial Surfaces by a New Touch Transfer Assay Displays Strong Superiority of a Copper Alloy Compared to Silver Containing Surfaces. Knobloch JK-M, Tofern S, Kunz W, SchuÈtze S, Riecke M, Solbach W, et al. PLOS ONE 12(11): e0187442.  Nov 2017

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187442

Antibiotic Resistance, Ability to Form Biofilm and Susceptibility to Copper Alloys of Selected Staphylococcal Strains Isolated from Touch Surfaces in Polish Hospital Wards. A Różańska, A Chmielarczyk, D Romaniszyn, M Bulanda, M Walkowicz, P Osuch and T Knych. Antimicrobial Resistance & Infection Control, August 2017

open access icon https://aricjournal.biomedcentral.com/articles/10.1186/s13756-017-0240-x

Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination. A Różańska,A Chmielarczyk, D Romaniszyn, A Sroka-Oleksiak, M Bulanda, M Walkowicz, P Osuch, T Knych. International Journal of Environmental Research and Public Health, July 2017

open access icon https://www.mdpi.com/1660-4601/14/7/813

Killing of Bacteria by Copper, Cadmium, and Silver Surfaces Reveals Relevant Physicochemical Parameters. J Luo, C Hein, F Mücklich, M Solioz. Biointerphases 12,020301, 2017

https://avs.scitation.org/doi/10.1116/1.4980127

Potential of Copper Alloys to Kill Bacteria and Reduce Hospital Infection Rates. Michels and Michels, Internal Medicine Review, March 2017

open access icon https://www.researchgate.net/publication/317506873_Potential_of_copper_alloys_to_kill_bacteria_and_reduce_hospital_infection_rates

Influence of Copper and its Alloys Against Resistant Strains of Coagulase-negative Staphylococci Isolated from Touch Surfaces of Polish Hospital Units. A. Różańska, A. Chmielarczyk, D. Romaniszyn, M. Bulanda. Journal of Hospital Infection, Supplement 1, November 2016.

open access icon https://fis-his2016-abstracts.elsevierdigitaledition.com/#70/z

Small Colony Variants are More Susceptible to Copper-mediated Contact Killing for Pseudomonas Aeruginosa and Staphylococcus Aureus. Sha Liu and Xue-Xian Zhang, Journal of Medical Microbiology (2016), 65, 1143–1151

open access icon https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000348

Copper Alloys - The New ‘Old’ Weapon in the Fight Against Infectious Disease. Harold T. Michels, Corinne A. Michels, Current Trends in Microbiology, Vol. 10 2016

open access icon http://www.researchtrends.net/tia/abstract.asp?in=0&vn=10&tid=41&aid=5817&pub=2016&type=3

Antimicrobial Applications of Copper. Marin Vincent, Philippe Hartemann, Marc Engels-Deutsch. International Journal of Hygiene and Environmental Health. doi:10.1016/j.ijheh.2016.06.003

https://www.sciencedirect.com/science/article/pii/S1438463916300669

Lack of Involvement of Fenton Chemistry in Death of Methicillin-Resistant and Methicillin-Sensitive Strains of Staphylococcus aureus and Destruction of Their Genomes on Wet or Dry Copper Alloy Surfaces. S. L. Warnes and C. W. Keevil. Applied and Environmental Microbiology 2016, 10.1128/AEM.03861-15

open access icon https://aem.asm.org/content/82/7/2132.abstract

Physicochemical Properties of Copper Important for its Antibacterial Activity and Development of a Unified Model. Michael Hans, Salima Mathews, Frank Mücklich and Marc Solioz, Biointerphases 11, 018902 (2016)

https://avs.scitation.org/doi/full/10.1116/1.4935853

Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. Warnes SL, Little ZR, Keevil CW. 2015. Human coronavirus 229E remains infectious on common touch surface materials. mBio 6(6):e01697-15. doi:10.1128/mBio.01697-15.

open access icon https://mbio.asm.org/content/6/6/e01697-15.full

From Laboratory Research to a Clinical Trial: Copper Alloy Surfaces Kill Bacteria and Reduce Hospital-Acquired Infections. Michels, H.T. 2015. Health Environments Research & Design Journal. 1–16. July 2015

open access icon https://journals.sagepub.com/doi/full/10.1177/1937586715592650

Antimicrobial Activity of Copper Alloys Against Invasive Multidrug-Resistant Nosocomial Pathogens. Koseoglu Eser O, Ergin A, Hascelik G, Current Microbiology, 5 June 2015

https://link.springer.com/article/10.1007/s00284-015-0840-8

Destruction of the Capsid and Genome of GII.4 Human Norovirus Occurs During Exposure to Metal Alloys Containing Copper. S. Manuel, M. D. Moore and L.A. Jaykus, Applied and Environmental Microbiology, 15 May 2015

open access icon https://aem.asm.org/content/81/15/4940.abstract

Antimicrobial Properties of Copper in Gram-Negative and Gram-Positive Bacteria. Meyer, T.J. 2015. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. Vol:9, No:3.

http://waset.org/publications/10000728/antimicrobial-properties-of-copper-in-gram-negative-and-gram-positive-bacteria

Inactivation of Murine Norovirus on a Range of Copper Alloy Surfaces is Accompanied by Loss of Capsid Integrity. S. L. Warnes, E. N. Summersgill and C.W. Keevil, Applied and Environmental Microbiology, 1 December 2014

open access icon https://www.ncbi.nlm.nih.gov/pubmed/25452290

Inactivation of Bacterial and Viral Biothreat Agents on Metallic Copper Surfaces. Pauline Bleichert, Christophe Espirito Santo, Matthias Hanczaruk, Hermann Meyer, Gregor Grass, BioMetals, International Biometals Society, 7 August 2014

https://link.springer.com/article/10.1007%2Fs10534-014-9781-0

Surface Structure Influences Contact Killing of Bacteria by Copper. Marco Zeiger, Marc Solioz, Hervais Edongu, Eduard Arzt & Andreas S. Schneider. MicrobiologyOpen 2014; 3(3): 327–332.

open access icon https://onlinelibrary.wiley.com/doi/full/10.1002/mbo3.170

Inactivation of Norovirus on Dry Copper Alloy Surfaces. Warnes SL, Keevil CW (2013)

open access icon https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075017#amendment-correction

Norovirus Inactivation on Antimicrobial Touch Surfaces. B Keevil, S Warnes, Centre for Biological Sciences, University of Southampton, UK. Antimicrobial Resistance and Infection Control 2013, 2(Suppl 1):P25.

open access icon https://aricjournal.biomedcentral.com/articles/10.1186/2047-2994-2-S1-P25

Contact Killing of Bacteria on Copper is Suppressed if Bacterial-Metal Contact is Prevented and Induced on Iron by Copper Ions. Salima Mathews, Michael Hans, Frank Mücklich, Marc Solioz, Applied and Environmental Microbiology, April 2013, Vol 79, No 8. Copyright © American Society for Microbiology. doi:10.1128/AEM.03608-12.

open access icon https://aem.asm.org/content/79/8/2605.abstract?sid=0440523b-d956-47a0-a2db-b30fefb29fc0

Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. Souli M, Galani I, Plachouras D, Panagea T, Armaganidis A, Petrikkos G, Giamarellou H. 2012.

open access icon https://www.ncbi.nlm.nih.gov/pubmed/23228934

Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces: Implications for Public Health. Sarah L. Warnes, Callum J Highmore, and C William Keevil, Centre for Biological Sciences, University of Southampton, Highfield Campus, Southampton, UK. doi: 10.1128/​mBio.00489-12 27 November 2012 mBio vol. 3 no. 6 e00489-12

open access icon https://mbio.asm.org/content/3/6/e00489-12/article-info

Characterization and Control of the Microbial Community Affiliated with Copper or Aluminum Heat Exchangers of HVAC Systems. Michael G Schmidt, Hubert H Attaway, Silva Terzieva, Anna Marshall, Lisa L Steed, Deborah Salzberg, Hameed A Hamoodi, Jamil A Khan, Charles E Feigley, Harold T Michels. Curr Microbiol, 2012 May 9.

open access icon https://link.springer.com/article/10.1007/s00284-012-0137-0

Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Christophe Espírito Santo, Davide Quaranta, Gregor Grass. MicrobiologyOpen, Volume 1, Issue 1, pages 46–52, March 2012, DOI: 10.1002/mbo3.2

open access icon https://onlinelibrary.wiley.com/doi/full/10.1002/mbo3.2

Evaluation of Antimicrobial Properties of Copper Surfaces in an Outpatient Infectious Disease Practice. Seema Rai, Bruce E Hirsch, Hubert H Attaway, Richard Nadan, S Fairey, J Hardy, G Miller, Donna Armellino, Wilton R Moran, Peter Sharpe, Adam Estelle, J H Michel, Harold T Michels and Michael G Schmidt . Feb 2012

https://www.jstor.org/stable/10.1086/663701?seq=1#page_scan_tab_contents

Mechanism of Copper Surface Toxicity in Escherichia Coli O157:H7 and Salmonella Involves Immediate Membrane Depolarization Followed by Slower Rate of DNA Destruction which Differs from that Observed for Gram-positive Bacteria. S L Warnes, V Caves and C W Keevil, Environmental Healthcare Unit, University of Southampton, Highfield, Southampton SO17 1BJ, UK.Journal Article: Environmental Microbiology (impact factor: 5.5). 12/2011; DOI:10.1111/j.1462-2920.2011.02677.x PubMed

https://www.researchgate.net/publication/51886538_Mechanism_of_copper_surface_toxicity_in_Escherichia_coli_O157H7_and_Salmonella_involves_immediate_membrane_depolarization_followed_by_slower_rate_of_DNA_destruction_which_differs_from_that_observed_fo

Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Contact. S L Warnes and C W Keevil, Applied and Environmental Microbiology, September 2011.

open access icon https://aem.asm.org/content/77/17/6049

The Role of Antimicrobial Copper Surfaces in Reducing Healthcare-associated Infections. Panos A Efstathiou, European Infectious Disease, 2011;5(2):125-8

open access icon http://www.medical-development.gr/articles/efstathiou.pdf

Science, Technology and Design: Harnessing Copper’s Antimicrobial Power – A Review. Mark Tur, Proceedings of 2011 European Design 4 Health Conference, Sheffield, UK. 13-15th July 2011

open access icon https://lirias.kuleuven.be/bitstream/123456789/359004/1/D4H2011_proceedings_v5a.pdf#page=329

Bacterial Killing by Dry Metallic Copper Surfaces. C Espírito Santo, E W Lam, C G Elowsky, D Quaranta, D W Domaille, C J Chang, and G Grass, 2011. Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microbiol. 77: 794-802

open access icon https://aem.asm.org/content/77/3/794.abstract

Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces. Davide Quaranta, Travis Krans, Christophe Espírito Santo, Christian G Elowsky, Dylan W Domaille, Christopher J Chang, Gregor Grass, Applied & Environmental Microbiology. Jan. 2011, p.416–426 Vol. 77, No. 2 0099-2240/11/$12.00 doi:10.1128/AEM.01704-10 ASM

open access icon https://aem.asm.org/content/77/2/416.short

Biocidal Efficacy of Copper Alloys against Pathogenic Enterococci Involves Degradation of Genomic and Plasmid DNA. S L Warnes, S M Green, H T Michels, C W Keevil, Appl. Environ. Microbiol. doi:10.1128/AEM.03050-09, 2010

open access icon https://aem.asm.org/content/76/16/5390.abstract

Effects of Temperature and Humidity on the Efficacy of Methicillin-resistant Staphylococcus Aureus Challenged Antimicrobial Materials Containing Silver and Copper. H T Michels, J O Noyce, and C W Keevil, Letters in Applied Microbiology, 49 (2009) 191-195

open access icon https://www.ncbi.nlm.nih.gov/pubmed/18207284?dopt=Citation

Potential for Preventing Spread of Fungi in Air-Conditioning Systems Constructed Using Copper Instead of Aluminium. L Weaver, H T Michels, C W Keevil, Letters in Applied Microbiology ISSN 0266-8254 (2010) 50 (1): 18. doi:10.1111/j.1472-765X.2009.02753.x. PMID 19943884.

open access icon http://www.copperairquality.org/research/documents/fungi.pdf

Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Kristopher Page, Michael Wilson and Ivan P Parkin, University College London. January 2009. J. Mater. Chem. 2009 DOI: 10.1039/b818698g

https://pubs.rsc.org/en/content/articlelanding/2009/jm/b818698g#!divAbstract

The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. S W J Gould, M D Fielder, A F Kelly, M Morgan, J Kenny, D P Naughton,Annals of Microbiology, 59 (1) 151-156 (2009)

http://publications.icr.ac.uk/7815/

Antimicrobial Properties of Copper Alloy Surfaces, with a Focus on Hospital-Acquired Infections. H Michels, W Moran and J Michel, International Journal of Metalcasting, Summer 2008, pp 47-56

open access icon http://www.tistrip.be/websites/uploadfolder/75/cms/images/effet_ab_sur_bact_hospi.pdf

Antimicrobial Efficacy of Copper Surfaces Against Spores and Vegetative Cells of Clostridium Difficile: The Germination Theory. L. J. Wheeldon, T. Worthington, P. A. Lambert, A. C. Hilton, C. J. Lowden and T. S. J. Elliott, Journal of Antimicrobial Chemotherapy 2008 62(3):522-525; doi:10.1093/jac/dkn219.

open access icon https://academic.oup.com/jac/article/62/3/522/732872

Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. L Weaver, H T Michels, and C W Keevil, Journal of Hospital Infection, Vol 68, Issue 2, pp 145-151, February 2008

https://www.ncbi.nlm.nih.gov/pubmed/18207284?dopt=Citation

The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study . S Mehtar, I Wiid, and S D TodorovJournal of Hospital Infection, Vol. 68, Issue 1, pp 45-51, January 2008

https://www.ncbi.nlm.nih.gov/pubmed/18069086?dopt=Abstract

Inactivation of Influenza A Virus on Copper versus Stainless Steel Surfaces. J O Noyce, H Michels and C W Keevil, Applied and Environmental Microbiology, pp 2748 - 2750, Vol 73, No 8, April 2007

open access icon https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855605/

Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. S A Wilks, H T Michels and C W Keevil, International Journal of Food Microbiology, 111, September (2006), pp 93-98.

https://www.ncbi.nlm.nih.gov/pubmed/16876278?dopt=AbstractPlus

Antimicrobial Characteristics of Copper. H T Michels, ASTM Standardization News, October 2006.

open access icon https://www.astm.org/SNEWS/OCTOBER_2006/michels_oct06.html

Potential use of copper surfaces to reduce survival of epidemic methicillin-resistant Staphylococcus aureus in the healthcare environment. J O Noyce, H Michels and C W Keevil, Journal of Hospital Infection, Vol 63, Issue 3, pp 289-297, July 2006

https://www.ncbi.nlm.nih.gov/pubmed/16650507?dopt=AbstractPlus

Use of Copper Cast Alloys to Control Escherichia coli O157 Cross Contamination during Food Processing. J O Noyce, H Michels, and C W Keevil, Applied and Environmental Microbiology, pp 4239-4244, June 2006.

open access icon https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489622/?tool=pubmed

The survival of Escherichia coli O157 on a range of metal surfaces. S A Wilks, H Michels and C W Keevil, International Journal of Food Microbiology, 105 (2005), pp 445-454.

https://www.ncbi.nlm.nih.gov/pubmed/16253366?dopt=AbstractPlus

Copper Alloys for Human Infectious Disease Control. H T Michels, J P Noyce, S A Wilks and C W Keevil. Copper for the 21st Century, Materials Science & Technology 2005 (MS&T’05) Conference, Pittsburgh, PA, September 25-28, 2005, ASM, ACerS, AIST, AWS, TMS, ISSN: 1546-2498

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.559.9650

Inactivation of Escherichia coli and coliform bacteria in traditional brass and earthenware water storage vessels. P Tandon, S Chibber and R Reed, Antonie van Leeuwenhoek (2005) 88:35-4, 14pp

open access icon https://link.springer.com/article/10.1007%2Fs10482-004-7366-6

Mechanism

Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat. A Parra, M Toro, R Jacob, P Navarrete, M Troncoso, G Figueroa, A Reyes-Jara. Brazilian Journal of Microbiology, August 2018

open access icon https://www.sciencedirect.com/science/article/pii/S1517838217312546#!

Impact of oxidation of copper and its alloys in laboratory-simulated conditions on their antimicrobial efficiency. M Walkowicza, P Osucha, B Smyraka, T Knycha, E Rudnika, L Cieniekb, A Różańskac, A Chmielarczykc, D Romaniszync, M Bulandac. Corrosion Science, August 2018

open access icon https://www.sciencedirect.com/science/article/pii/S0010938X17313963

Antimicrobial efficacy and compatibility of solid copper alloys with chemical disinfectants. Katrin Steinhauer, Sonja Meyer, Jens Pfannebecker, Karin Teckemeyer, Klaus Ockenfeld, Klaus Weber, Barbara Becker. PLOS ONE, August 2018

open access icon https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200748

Antimicrobial Effect of Copper Alloys on Acinetobacter Species Isolated from Infections and Hospital Environment . Anna Różańska, Agnieszka Chmielarczyk, Dorota Romaniszyn, Grzegorz Majka, Małgorzata Bulanda. BioMed Central, January 2018

open access icon https://aricjournal.biomedcentral.com/track/pdf/10.1186/s13756-018-0300-x?site=aricjournal.biomedcentral.com

Contact killing and antimicrobial properties of copper. M Vincent, R E Duval, P Hartemann, M Engels‐Deutsch. Journal of Applied Microbiology, December 2017

open access icon https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13681

Killing of Bacteria by Copper, Cadmium, and Silver Surfaces Reveals Relevant Physicochemical Parameters. J Luo, C Hein, F Mücklich, M Solioz. Biointerphases 12,020301, 2017.

https://avs.scitation.org/doi/10.1116/1.4980127

Small Colony Variants are More Susceptible to Copper-mediated Contact Killing for Pseudomonas Aeruginosa and Staphylococcus Aureus. Sha Liu and Xue-Xian Zhang, Journal of Medical Microbiology (2016), 65, 1143–1151

open access icon https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000348

Copper Alloys - The New ‘Old’ Weapon in the Fight Against Infectious Disease. Harold T. Michels, Corinne A. Michels, Current Trends in Microbiology, Vol. 10 2016

open access icon http://www.researchtrends.net/tia/abstract.asp?in=0&vn=10&tid=41&aid=5817&pub=2016&type=3

Lack of Involvement of Fenton Chemistry in Death of Methicillin-Resistant and Methicillin-Sensitive Strains of Staphylococcus aureus and Destruction of Their Genomes on Wet or Dry Copper Alloy Surfaces. S. L. Warnes and C. W. Keevil. Applied and Environmental Microbiology 2016, 10.1128/AEM.03861-15

open access icon https://aem.asm.org/content/82/7/2132.abstract

Physicochemical Properties of Copper Important for its Antibacterial Activity and Development of a Unified Model. Michael Hans, Salima Mathews, Frank Mücklich and Marc Solioz, Biointerphases 11, 018902 (2016)

https://avs.scitation.org/doi/full/10.1116/1.4935853

Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. Warnes SL, Little ZR, Keevil CW. 2015. Human coronavirus 229E remains infectious on common touch surface materials. mBio 6(6):e01697-15. doi:10.1128/mBio.01697-15.

open access icon https://mbio.asm.org/content/6/6/e01697-15.full

Destruction of the Capsid and Genome of GII.4 Human Norovirus Occurs During Exposure to Metal Alloys Containing Copper. C. S. Manuel, M. D. Moore and L.A. Jaykus, Applied and Environmental Microbiology, 15 May 2015

open access icon https://aem.asm.org/content/81/15/4940.full

Inactivation of Murine Norovirus on a Range of Copper Alloy Surfaces is Accompanied by Loss of Capsid Integrity. S. L. Warnes, E. N. Summersgill and C.W. Keevil, Applied and Environmental Microbiology, 1 December 2014

open access icon https://aem.asm.org/content/81/3/1085

Surface Structure Influences Contact Killing of Bacteria by Copper. Marco Zeiger, Marc Solioz, Hervais Edongu, Eduard Arzt & Andreas S. Schneider. MicrobiologyOpen 2014; 3(3): 327–332.

open access icon https://onlinelibrary.wiley.com/doi/full/10.1002/mbo3.170

Inactivation of Norovirus on Dry Copper Alloy Surfaces. Warnes SL, Keevil CW (2013)

open access icon https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075017#amendment-correction

Contact Killing of Bacteria on Copper is Suppressed if Bacterial-Metal Contact is Prevented and Induced on Iron by Copper Ions. Salima Mathews, Michael Hans, Frank Mücklich, Marc Solioz, Applied and Environmental Microbiology, April 2013, Vol 79, No 8. Copyright © American Society for Microbiology. doi:10.1128/AEM.03608-12.

open access icon https://aem.asm.org/content/79/8/2605.abstract?sid=0440523b-d956-47a0-a2db-b30fefb29fc0

Mechanism of Copper Surface Toxicity in Escherichia Coli O157:H7 and Salmonella Involves Immediate Membrane Depolarization Followed by Slower Rate of DNA Destruction which Differs from that Observed for Gram-positive Bacteria. S L Warnes, V Caves and C W Keevil, Environmental Healthcare Unit, University of Southampton, Highfield, Southampton SO17 1BJ, UK.Journal Article: Environmental Microbiology (impact factor: 5.5). 12/2011 https://www.researchgate.net/publication/51886538_Mechanism_of_copper_surface_toxicity_in_Escherichia_coli_O157H7_and_Salmonella_involves_immediate_membrane_depolarization_followed_by_slower_rate_of_DNA_destruction_which_differs_from_that_observed_fo

Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Contact. S L Warnes and C W Keevil, Applied and Environmental Microbiology, September 2011.

open access icon https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165410/

Biocidal Efficacy of Copper Alloys against Pathogenic Enterococci Involves Degradation of Genomic and Plasmid DNA. S L Warnes, S M Green, H T Michels, C W Keevil, Appl. Environ. Microbiol. doi:10.1128/AEM.03050-09, 2010

open access icon https://aem.asm.org/content/76/16/5390.abstract

Antimicrobial Efficacy of Copper Surfaces Against Spores and Vegetative Cells of Clostridium Difficile: The Germination Theory. L. J. Wheeldon, T. Worthington, P. A. Lambert, A. C. Hilton, C. J. Lowden and T. S. J. Elliott, Journal of Antimicrobial Chemotherapy 2008 62(3):522-525; doi:10.1093/jac/dkn219.

open access icon https://academic.oup.com/jac/article/62/3/522/732872

Reviews

Antimicrobial surfaces to prevent healthcare-associated infections: a systematic review: a different view. Schmidt MG, Salgado CD, Freeman KD, John Jr. JF, Cantey RJ, Sharpe PA, Michels HT. Journal of Hospital Infection, February 2018

https://www.journalofhospitalinfection.com/article/S0195-6701(18)30099-9/pdf

Contact killing and antimicrobial properties of copper. M Vincent, R E Duval, P Hartemann, M Engels‐Deutsch. Journal of Applied Microbiology, December 2017

open access icon https://onlinelibrary.wiley.com/doi/full/10.1111/jam.13681

The Role of Copper Surfaces in Reducing the Incidence of Healthcare-associated infections: A Systematic Review and Meta-analysis. Ignacio Pineda, Richard Hubbard,Francisca Rodríguez. Canadian Journal of Infection Control, Spring 2017

https://ipac-canada.org/photos/custom/CJIC/IPAC_Spring2017_Pineda.pdf

Potential of Copper Alloys to Kill Bacteria and Reduce Hospital Infection Rates. Michels and Michels, Internal Medicine Review, March 2017

http://internalmedicinereview.org/index.php/imr/article/download/363/pdf

Copper Alloys - The New ‘Old’ Weapon in the Fight Against Infectious Disease. Harold T. Michels, Corinne A. Michels, Current Trends in Microbiology, Vol. 10 2016

open access icon http://www.researchtrends.net/tia/abstract.asp?in=0&vn=10&tid=41&aid=5817&pub=2016&type=3

Antimicrobial Applications of Copper. Marin Vincent, Philippe Hartemann, Marc Engels-Deutsch. International Journal of Hygiene and Environmental Health. doi:10.1016/j.ijheh.2016.06.003

https://www.sciencedirect.com/science/article/pii/S1438463916300669

Physicochemical Properties of Copper Important for its Antibacterial Activity and Development of a Unified Model. Michael Hans, Salima Mathews, Frank Mücklich and Marc Solioz, Biointerphases 11, 018902 (2016)

https://avs.scitation.org/doi/full/10.1116/1.4935853

Destruction of the Capsid and Genome of GII.4 Human Norovirus Occurs During Exposure to Metal Alloys Containing Copper. C. S. Manuel, M. D. Moore and L.A. Jaykus, Applied and Environmental Microbiology, 15 May 2015

open access icon https://aem.asm.org/content/81/15/4940.abstract

Understanding the Role of Facility Design in the Acquisition and Prevention of Healthcare-associated Infections. Health Environments and Research Design Journal, Vol 7, Supplement, 2013

open access icon http://digimags.vendomegrp.com/html/HERD-Supplement/HERD_Special.pdf

Evaluation of New In Vitro Efficacy Test for Antimicrobial Surface Activity Reflecting UK Hospital Conditions. M Ojeil, C Jermann, J Holah, S P Denyer, J-Y Maillard. Sept 2013

https://www.researchgate.net/publication/257349178_Evaluation_of_new_in_vitro_efficacy_test_for_antimicrobial_surface_activity_reflecting_UK_hospital_conditions

Application of copper to prevent and control infection. Where are we now? O’Gorman J, Humphreys H, Journal of Hospital Infection (2012), http://dx.doi.org/10.1016/j.jhin.2012.05.009.

open access icon http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.4024&rep=rep1&type=pdf

Control and Mitigation of Healthcare-Acquired Infections. Peter A Sharpe, MBA, EDAC, and Michael G Schmidt, MA, PhD. Control and mitigation of healthcare-acquired infections: Designing clinical trials to evaluate new materials and technologies. Health Environments Research & Design Journal, 5(1), 94-115. 2011.

https://pdfs.semanticscholar.org/06cc/48d26c1a3bca289d3c5b87e1953724f08e08.pdf

Science, Technology and Design: Harnessing Copper’s Antimicrobial Power – A Review. Mark Tur, Proceedings of 2011 European Design 4 Health Conference, Sheffield, UK. 13-15th July 2011

open access icon https://lirias.kuleuven.be/bitstream/123456789/359004/1/D4H2011_proceedings_v5a.pdf#page=329

Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Kristopher Page, Michael Wilson and Ivan P Parkin, University College London. January 2009. J. Mater. Chem. 2009 DOI: 10.1039/b818698g

https://pubs.rsc.org/en/content/articlelanding/2009/jm/b818698g#!divAbstract

Antimicrobial Characteristics of Copper. H T Michels, ASTM Standardization News, October 2006.

open access icon https://www.astm.org/SNEWS/OCTOBER_2006/michels_oct06.html

*Laboratory testing shows that, when cleaned regularly, antimicrobial copper surfaces kill greater than 99.9% of the following bacteria within 2 hours of exposure: MRSA, VRE, Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa, and E. coli O157:H7. Antimicrobial copper surfaces are a supplement to and not a substitute for standard infection control practices and have been shown to reduce microbial contamination, but do not necessarily prevent cross contamination or infections; users must continue to follow all current infection control practices.